博客
关于我
数据结构之数组与广义表
阅读量:360 次
发布时间:2019-03-04

本文共 1464 字,大约阅读时间需要 4 分钟。

快速转置法是一种高效的矩阵转置算法,特别适用于处理大规模稀疏矩阵。通过三元组表示矩阵的非零元素,可以显著减少存储空间和计算复杂度。在本文中,我们将详细阐述快速转置法的实现原理及其在矩阵转置中的应用。

代码概述

以下是快速转置法的核心代码:

#include 
using namespace std;#define MAXSIZE 1000struct { int row, col; int e;} TSMatrix;struct { int date[MAXSIZE + 1]; int m, n, len;} TSMatrix;void FastTransposeTSMatrix(TSMatrix A, TSMatrix *B) { int col, t, p, q; int num[MAXSIZE], position[MAXSIZE]; B->len = A.len; B->m = A.n; B->n = A.m; if (B->len) { for (col = 1; col <= A.n; col++) { num[col] = 0; } for (t = 0; t < A.len; t++) { num[A.date[t].col]++; } for (col = 1; col <= A.n; col++) { position[col] = position[col - 1] + num[col - 1]; } for (p = 1; p <= A.len; p++) { col = A.date[p].col; q = position[col]; B->date[q].row = A.date[p].col; B->date[q].col = A.date[p].row; B->date[q].e = A.date[p].e; position[col]++; } }}

工作原理

快速转置法通过遍历矩阵的非零元素,记录每列的非零元素个数和位置,然后在新矩阵中按相反的位置存储这些元素。具体步骤如下:

  • 初始化数组:创建两个数组numposition,分别用于记录每列的非零元素个数和每列的第一个非零元素位置。

  • 统计非零元素:遍历原始矩阵的非零元素,更新num数组。num[col]表示第col列的非零元素个数。同时,记录每个列的第一个非零元素位置到position数组中。

  • 位置交换:遍历原始矩阵的非零元素,根据position数组找到目标列的位置q,然后在新矩阵中交换行和列的位置,并赋值元素。

  • 这种方法充分利用了稀疏矩阵的特性,避免了传统转置方法的高时间复杂度。

    优点

    • 高效性:快速转置法的时间复杂度为O(len),远低于传统转置方法。
    • 空间效率:通过三元组表示,只存储非零元素,节省了大量存储空间。
    • 适用性:特别适用于大规模稀疏矩阵,能够显著提高处理效率。

    总结

    快速转置法通过一次遍历实现矩阵转置,充分利用稀疏矩阵的特性,既提高了效率又节省了资源,是现代矩阵运算中不可或缺的一部分。

    转载地址:http://dkfr.baihongyu.com/

    你可能感兴趣的文章
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    nmap 使用方法详细介绍
    查看>>